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ABSTRACT

Multiple commercial microarrays for measuring
genome-wide gene expression levels are currently
available, including oligonucleotide and cDNA,
single- and two-channel formats. This study reports
on the results of gene expression measurements
generated from identical RNA preparations that
were obtained using three commercially available
microarray platforms. RNA was collected from
PANC-1 cells grown in serum-rich medium and at
24 h following the removal of serum. Three bio-
logical replicates were prepared for each condition,
and three experimental replicates were produced for
the ®rst biological replicate. RNA was labeled and
hybridized to microarrays from three major sup-
pliers according to manufacturers' protocols, and
gene expression measurements were obtained
using each platform's standard software. For each
platform, gene targets from a subset of 2009 com-
mon genes were compared. Correlations in gene
expression levels and comparisons for signi®cant
gene expression changes in this subset were calcu-
lated, and showed considerable divergence across
the different platforms, suggesting the need for
establishing industrial manufacturing standards,
and further independent and thorough validation of
the technology.

INTRODUCTION

A powerful application of microarray technology is in
discovery-based biomedical research. Under the discovery
based approach, DNA microarrays are used as screening tools
to identify genes associated with biological processes of
interest. Using microarrays, a genome-wide assay can be
conducted and researchers can mine the resulting experimen-
tal data to screen a large subset of the genome to discover sets
of genes associated with the biological phenomena of interest

(1). Once target genes are identi®ed, additional laboratory
resources may be invested to validate this list and to further
characterize the relationship of their biological functions to
the process under study (2). The ef®ciency of knowledge
discovery using this high-throughput experimental process
depends upon the reliability of the microarray technology used
in the initial screening experiments. Researchers planning to
utilize microarray experiments for discovery-based research
must evaluate available commercial technologies when allo-
cating laboratory resources for prospective experiments.

Several formats of microarrays for measuring genome-wide
gene expression levels are currently available (3). Important
factors for selecting an appropriate microarray platform would
include sensitivity, speci®city and both inter- and intra-assay
reproducibility. Also important is knowledge of the degree of
cross-platform agreement, as interchangeability amongst
various microarray formats would allow for the utility of
gene expression data without regard to platform. Having such
a property would allow researchers from independent labora-
tories to make direct comparisons on data produced from
different types of available platforms, and would reduce the
need to replicate experiments (4). Such cross-platform com-
parisons ideally require that corresponding RNA expression
measurements be concordant. Previous comparisons of
microarray formats suggested that expression data on the
NCI60 cell lines from spotted cDNA mircroarrays could not
be directly combined with data from synthesized oligonucleo-
tide arrays (5). This ®nding was determined using identical
originating cell lines; however, cell culturing, mRNA prep-
aration and hybridization of targets were all performed
separately. In this study we analyzed identical RNA prepar-
ations using three commercially available high-density
microarray platforms. This experimental design allowed us
to compare the microarray formats while controlling for
variation that may have arisen from independent cell
culturing, RNA isolation and puri®cation.

Three major commercial microarray platforms were evalu-
ated by using standardized input RNA sample, and ensuring
that all microarray experiments were carried out by technolo-
gists specialized in each particular microarray labeling and
hybridization protocol. In addition, the analysis of data from a
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number of biological and experimental replicates allowed us
to implement robust statistical methods to select differentially
expressed genes from each platform. Interestingly, during the
course of data analysis, we discovered that there was
substantial variation in the data generated from the individual
platforms. Hence, we attempted to determine the extent to
which discovery-based research using microarrays from
different commercial vendors would produce either overlap-
ping or divergent target gene sets.

MATERIALS AND METHODS

Gene expression data

PANC-1 cells were grown in serum-rich medium, trypsinized
and collected immediately and at 24 h following transfer of
these cells to serum-free medium. RNA was promptly isolated
using Trizol reagent (Invitrogen) and RNeasy (Qiagen), and
their quality checked using the Bioanalyzer (Agilent).
Suf®cient RNA for each biological replicate was extracted
to run many microarray experiments, and stored in ethanol at
±70°C until the time of the assay, when it was solubilized in
RNAse-free water. Thus, each one of the microarray platforms
utilized a common sample pool of RNA from control PANC-1
cells which have a pancreatic ductal cell phenotype or from an
early stage of their differentiation to a pancreatic islet
phenotype (Hardikar et al., manuscript submitted). RNA was
labeled and hybridized to microarrays from Affymetrix
(U95Av.2 GeneChips, multiple 25mer oligonucleotide probe
sets), Agilent (Human 1, cDNA probes) and Amersham
(Codelink UniSet Human I Bioarrays, 30mer oligonucleotide
probes) according to manufacturers' guidelines. For the
single-channel-type arrays (Affymetrix, Amersham), a total
of 10 microarrays were used to hybridize RNA collected from
cells from the two time points. For each time point, three
arrays were hybridized with RNA derived from one of the
PANC-1 cell cultures (technical replicates); the remaining two
microarrays were hybridized with RNA from two independent
cell cultures (biological replicates), thus generating ®ve data
points for each probe at each time point. For the cDNA arrays
(two-channel type) RNA from the two time points were
cohybridized on a single array. Each of the ®ve Agilent slides
contained two sets of coordinate arrays, where samples
labeled with the opposite dye (Cy5 and Cy3) con®gurations
were hybridized. Because of the dye-swap replication used in
the Agilent system, 10 data values were generated for each
time point. For this dataset, dye-swap replicates produced by
repeated measurement using the green and red ¯uorochromes
were averaged resulting in ®ve data values for each time point.
Probe (Agilent and Amersham) or probe set (Affymetrix)
signals were obtained using manufacturers' standard software
and normalization procedures. For the Agilent cDNA arrays,
the default settings of the Agilent G2566AA Feature
Extraction Software (v.A.5.1.1) were used, which selects the
LOWESS (locally weighted linear regression curve ®t)
normalization method (6). For the Amersham Codelink
Array, the BioDiscovery ImaGene (v.5) software was used,
and for Affymetrix GeneChips, the Microarray Suite software
(MAS 5.0) was used, both of which utilize global (linear)
normalization procedures. Data ¯agged as being poor quality
by the Agilent and Amersham data extraction software were

removed from the analysis. Each microarray platform reported
the GenBank ID of the sequence interrogated by each of the
probes or probe sets on the array. These GenBank IDs were
compared across platforms to identify a group of 2009
common genes present on all three of the platforms. Signal
values were averaged in cases where multiple probes for a
given GenBank ID were present on the array. The method of
matching probes by GenBank IDs was chosen over matching
by Unigene ID, since this could have introduced additional
confounding factors such platform-dependent probes for
different splice variants (7) across the arrays. Despite the
increased number of common genes (4012) when analyzing
measurements matched by the Unigene IDs, we did ®nd
results similar to those presented in this paper (see supple-
mental Tables 1, 2 and 3 available as Supplementary Material
at NAR Online).

In a manner similar to the ANOVA analysis performed by
Kerr et al. (8) and Wol®nger et al. (9), in this study we
analyzed base 2 logarithms of the original ¯uorescent signals
when modeling differential expression with an ANOVA
model and computing correlations of signal across platforms
(see below). However, since gene expression measurements
were reported in units unique to each platform, to directly
compare data between platforms (Figs 1 and 3) required that
these measurements be converted to a single common scale.
To accomplish this, we applied a Z-transformation so that the
mean and variance (mean = 0 and standard deviation = 1) of
the signals for the 2009 common GenBank IDs were
equivalent across microarray chips, and platforms (Figs 1
and 3). Thus, analysis of the Z-scores permitted direct
comparisons of signal distributions and error levels across
technologies.

Correlation computations

We computed Pearson linear correlation coef®cients and
Spearman rank-order correlation coef®cients between the
®rst and second technical replicates and the ®rst and
second biological replicates for each platform to assess the

Figure 1. A comparison of distributions of log signal intensity values from
repeated experiments on three different commercial microarray technolo-
gies. Heterogeneous intensity scales across platforms were rescaled using a
Z-transformation with mean = 0 and standard deviation = 1.
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intra-platform correlations. To assess the cross-platform
correlation of gene-expression measurements we computed
three Pearson linear correlation coef®cients and Spearman
rank-order correlation coef®cients for sequence-matched gene
measurements for each platform pair. The expression measure
of a gene for a given platform was computed as the mean of
the biological replicates (where the average of the experi-
mental replicates was used for the ®rst biological replicate).
Since data from two time points were available, we computed
correlation coef®cients across 4018 matched measurement
pairs. To examine the comparability of intra-assay relation-
ships found within each of the microarray runs, we also
calculated correlation coef®cients for the log ratio calculated
as the base 2 logarithm of the ratio of averaged signal of the
biological replicates (where the average of the experimental
replicates was used for the ®rst biological replicate) from time
point 0 h and time point 24 h (n = 2009). With three sets of

microarray measurements, three two-way comparisons of
these measurements can be performed. Statistical signi®cance
of each correlation coef®cient was determined using a
Bonferroni corrected alpha of 0.05/3 or ~0.017. The analysis
was performed using SAS statistical software.

Analysis of variance

As an exercise to examine whether data from each of the
commercial microarray technologies would lead to similar
results in a knowledge discovery experiment, we analyzed the
overlap of the target gene lists produced by data from the
different platforms. Presence or absence of differential gene
expression between time points 0 and 24 h was used as the
criterion for classi®cation of the genes as associated or not
associated with the biological phenomenon of phenotypic
differentiation. To determine signi®cant differences in
gene expression levels between the two time points, gene

Figure 2. Heat map of gene expression measurements normalized to a single array showing genes in rows and samples in columns.
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expression measurements for each gene on each array were
modeled using a two-factor mixed-model nested ANOVA. For
each gene in our set of 2009 common genes the expression
measurements were modeled as follows:

ygij = m + Ti + (TD)ij + egij

Where ygij is the base 2 logarithm measurement from gene
g(g = 1,¼,2009), treatment i(I = 1,2) and dish j(j = 1,2,3).
Estimates of the parameters of this model were computed
using type III sums of squares for each of the 2009 genes and
each microarray platform. Statistics from this model were
used to produce dichotomous classi®cations of the genes.
Genes were considered to have exhibited differential expres-
sion (`yes' or `no') if the treatment effect showed statistical
signi®cance tested at various alpha levels. Statistical tests
using an uncorrected (lenient) P-value criterion of 0.001 and
Bonferroni corrected (stringent) criterion of 0.05/2009 or
2.489 E-05 were performed. Two-way contingency tables for
each of the three possible platform pairs were created using
both the lenient and stringent classi®cations. Fisher's exact
test and McNemar's test were performed on these tables using
a Bonferroni corrected alpha of 0.05/3 or ~0.017. The
ANOVA and the various post-hoc analyses were performed
using SAS statistical software.

RESULTS

Gene expression data

To assess the overall similarity of the gene expression
measurements produced by each platform we examined the
distributions of the Z-scores of expression measurements
(Fig. 1). As indicated in Figure 1, the distribution of intensity
values from the Affymetrix GeneChip and Amersham
Codelink technologies appear approximately bell-shaped,
whereas the distribution for the Agilent cDNA array appears
bimodal. To see whether an unsupervised clustering method
would group technologies, we subjected the data to hierarch-
ical clustering after global normalization of the 2009 data
points from each group to one of the Affymetrix arrays (Fig. 2).
The dendogram shows that the three platform groups form
distinct clusters at the top level indicating that between-
platform variability is greater than within-platform variability.

To compare the error pro®les for the three platforms,
scatterplots of the standard deviation of gene expression
measurements for the technical replicates of each gene versus
the mean signal of these replicates were compared (Fig. 3).
Previous studies have shown that gene expression measure-
ments of low-abundance transcripts are more variable than
high-abundance transcripts (10,11). As indicated in Figure 3,
this trend is exhibited by the Affymetrix GeneChip data and to
a lesser degree by data produced by the Agilent technology.
Variability of the Amersham Codelink expression data was
low overall but still somewhat signal dependent.

Correlation coef®cients

We observed intra-platform correlation coef®cients >0.9 for
both technical and biological replicates on all platforms
(supplemental Table 4, supplemental Figs 1 and 2, available
at NAR Online). In comparison, we found the correlation
of matched gene measurements from different microarray

Figure 3. Experimental error plots of Z-scores as a function of mean inten-
sity. Data from experimental replicates were used for standard deviation cal-
culations.
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technologies to be modest, with an average Pearson's
correlation coef®cient of 0.53. The Pearson's correlation
coef®cients were similar across any combination of platforms.
The oligonucleotide arrays (Affymetrix and Amersham)
showed modestly higher correlation at 0.59; whereas the
Pearson's correlation coef®cient for the Agilent and
Amersham data was 0.48, and between the Agilent and
Affymetrix data was 0.50 (Table 1 and Fig. 4). Each of these
correlations were sign®cantly positive using a Bonferroni
corrected alpha for multiple comparisons (P < 0.017). The
level and signi®cance of correlation was not substantially
altered by computation of Spearman rank-order coef®cients
(Table 1). Linear correlation of log ratio measures showed
similar results (Table 2). Hypothesis test of no correlation of
log ratio measurements could also be rejected at a Bonferroni
corrected alpha of 0.017. Additionally, the greatest average
distance of log ratio observed was ~0.15 (supplemental
Table 5). Previous research has found that signal strength
can affect the level of cross-platform correlation, suggesting
that discordance occurred mostly with expression data in the
low signal range (5). We were interested in assessing the
presence of this property in our data, however we were unable
to make any de®nitive inferences regarding this issue since

creating subsets of our data by signal strength would lead to
the confounding problem of restriction of range, making any
potential inferences about the effect of signal strength upon
the level of correlation ambiguous. Nevertheless, from gross
inspection of the correlation plots, a distinctly `rocket-shaped'
appearance, which would suggest the presence of this trend,
was not apparent.

Analysis of variance

Using a Bonferroni correction for multiple tests (P < 2.489
E-05) resulted in one overlap in the lists of genes differentially
expressed across three technologies. Therefore, we analyzed
the ANOVA model using a more relaxed alpha to examine a
higher power and less conservative approach often taken in
knowledge discovery experimentation where false negatives
may be more undesirable than false positives (12). Using an
alpha of 0.001, we did observe larger overlaps between the
gene lists, which are summarized in Table 3 (see also
supplemental Table 6). Thus, the unions of differential gene
sets that included the Agilent gene list showed the highest
overall level of agreement (23 and 9) when compared to the
union of the two oligomer probe based platforms, Affymetrix
and Amersham; 5, (Fig. 5). The highest percent overlap

Table 1. Pearson's product-moment and Spearman's rank-order correlation coef®cients of gene expression measurements from three commercial microarray
technologies

Comparison Platform A Platform B Pearson's P-value Spearman's P-value n

1 Amersham Agilent 0.47767 <0.0001 0.47760 <0.0001 4018
2 Amersham Affymetrix 0.59594 <0.0001 0.59127 <0.0001 4018
3 Agilent Affymetrix 0.50498 <0.0001 0.50322 <0.0001 4018

P-values of the hypothesis of no correlation are also reported.

Table 2. Pearson's product-moment and Spearman's rank-order correlation coef®cients of the log ratio of times 0 and 24 h measurements

Comparison Platform A Platform B Pearson's P-value Spearman's P-value n

1 Amersham Agilent 0.59171 <0.0001 0.52132 <0.0001 2009
2 Amersham Affymetrix 0.52159 <0.0001 0.50853 <0.0001 2009
3 Agilent Affymetrix 0.53443 <0.0001 0.53262 <0.0001 2009

P-values of the hypothesis of no correlation are also reported.

Table 3. Summary of cross platform concordance levels

Platform A Platform B Bonferroni
alpha = 0.05

Alpha = 0.001 Alpha = 0.001 and
fold change > 2

Alpha = 0.01 and
fold change > 2

Affymetrix Agilent 9 4 19
A 34 (26%) A 22 (18%) A 84 (23%)
B 67 (13%)a B 36 (11%)a B 66 (29%)a

Affymetrix Amersham 5 2 22
A 34 (15%) A 22 (9%) A 84 (26%)
B 117 (4%) B 56 (4%) B 153 (14%)a

Agilent Amersham 1 23 16 34
A 12 (8%) A 67 (34%) A 36 (44%) A 66 (52%)
B 19 (5%) B 117 (20%)a B 56 (29%)a B 153 (22%)a

Column titles indicate the cut-off criterion for determination of differential gene expression. In each cell, the ®rst row represents the number of genes found
common to the technologies; the second and third rows report the total number found by technologies A and B. The percent overlap is also reported for each
technology.
aSigni®cant non-random association (see supplemental Tables 6, 7 and 8).
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observed (34%) was the percent of differentially expressed
genes detected by Agilent that were also detected by the
Amersham platform. Further analysis of the gene lists showed
that there were no instances of con¯icting results, i.e. genes

that were determined to be up-regulated by one technology
and down-regulated by another. Similar results were observed
using an additional 2-fold change (in both directions)
minimum criterion upon any genes found signi®cant at a
0.001 alpha level and a reduced alpha cut-off of 0.01 with a 2-
fold minimum criterion (Table 3, see also supplemental Tables
7 and 8).

Additionally, we applied a `sliding scale' analysis to our
data to explore the effect of using an alternative to pre-
set alpha and fold change cut-offs. First, a directional F
statistic was produced by giving the F statistic computed with
the ANOVA model a negative sign if the calculated log ratio
of the gene was negative. Genes were then classi®ed as
differentially expressed if this directional F statistic ranked
among the top 100 (up-regulated) or among the bottom 100
(down-regulated) directional F statistics for each platform,
altogether encompassing ~10% of the common gene list and
corresponding to a maximum P-value of 0.035. This analysis
was repeated using the top 5, 10, 25, 50 and 100 ranked
directional F statistics in each direction. The highest rate of
agreement produced by this `sliding scale' approach was 35%
(Table 4), which is similar to the best rate of overlap to the
method of using pre-set alpha and fold change cut-offs. When
applying this sliding scale analysis to log ratio instead of the F
statistic (Table 5), the highest rate of agreement was 40%; the
lowest log ratio observed was 0.7 or ~62% percent change.

Biological process themes

In addition to measuring cross-platform agreement on a gene-
by-gene level, we also explored the level of concordance of
the biological themes represented in the data across platforms.
Determination of the biological processes over-represented in
the differentially expressed gene lists of 200 of the top-ranking
(by F statistics) down- and up-regulated genes was performed
using the Expression Analysis Systematic Explorer (EASE)
software system (13). We selected Gene Ontology (GO)
biological process terms that had a multiple comparison
adjusted EASE score <0.05 for each of the platforms. The

Figure 4. Correlations of the gene-matched mRNA measurements. Scatter
plots are of the mean of log intensity values. Pearson's correlation coef®-
cients of these means and 95% con®dence intervals are reported in Table 1.

Figure 5. Venn diagram of genes classi®ed as differentially expressed by
each platform using a mixed-model nested ANOVA and an alpha cut-off of
0.001.
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multiple correction adjusted EASE P-value score was
determined using a bootstrap method that calculates the
probability of biological themes occurring by chance alone by
permuting 100 randomly generated lists of genes of equal size
to the original list of genes (13). We then condensed the
biological process terms to the most common parent without
going higher than the fourth GO level below biological
process. Biological themes represented in the down-regulated
gene lists showed some concordance; the highest rate of
concordance observed in this analysis (4/6, 67%) was the set
of biological process themes found by the Amersham and
Agilent platforms, which included cell cycle, nucleotide
metabolism, DNA metabolism and ribosome biogenesis
(Table 6). The pattern of down-regulation of genes related to
the cell cycle evident from data on all three technologies is
consistent with additional experimental cell cycle analysis
which indicated that ~40% of PANC-1 cells growing in
serum-containing medium were in the DNA synthesis phase
while ~15% of cells were in this phase after 24 h in serum-free
medium (14). Among the up-regulated gene lists, only two
predominating themes (carboxylic acid metabolism, organic
acid metabolism) were detected with the Agilent platform,
whereas Amersham and Affymeterix platforms showed no
signi®cant predominating biological theme. Similar results

were obtained if up- or down-regulated genes were selected at
an alpha cut-off of <0.05.

DISCUSSION

Presently, biomedical researchers using commercially avail-
able microarray assays can choose among a wide variety of
products based upon different adaptations of the technology.
Consistency of gene expression measurements across the
different platforms would allow researchers to directly
compare these measurements. Results of our unsupervised
clustering and PCA analysis (see Supplementary Material),
however, suggest that the largest variation in measurements
from these commercial microarrays is attributable to the
differences contributed by the platforms themselves.
Additionally, our results indicate that the Pearson's linear
correlation for gene expression measurements across plat-
forms was modest, ranging from 0.48 to 0.60. It is dif®cult to
comment on which platforms might show greater similarity,
since the interdependence in the correlational analysis
precludes us from making a direct comparison across the
platform pairs. For example: in Table 1, each of the
measurements used in the correlation calculation in row 1
were used once in the calculations made in rows 2 and 3. This

Table 4. Classi®cations based upon highest 5, 10, 25, 50 and 100 F statistics in each direction (up- and down-regulation)

Platform A Platform B Highest 5 Highest 10 Highest 25 Highest 50 Highest 100

Agilent Affymetrix 1/10 10% 2/20 10% 12/50 24% 27/100 27% 70/200 35%
Amersham Affymetrix 1/10 10% 1/20 5% 9/50 18% 17/100 17% 52/200 26%
Amersham Agilent 2/10 20% 3/20 15% 9/50 18% 24/100 24% 64/200 32%

The number of genes found common to the technologies in either the up- or down-regulated sets over the total number in both sets found by each technology
and the percentage this represents is reported.

Table 5. Classi®cations based upon highest 5, 10, 25, 50 and 100 log2 ratio in each direction (up- and down-regulation)

Platform A Platform B Highest 5 Highest 10 Highest 25 Highest 50 Highest 100

Agilent Affymetrix 2/10 20% 2/20 10% 11/50 22% 25/100 25% 57/200 29%
Amersham Affymetrix 2/10 20% 3/20 15% 10/50 20% 25/100 25% 60/200 30%
Amersham Agilent 4/10 40% 8/20 40% 17/50 34% 35/100 35% 78/200 39%

The number of genes found common to the technologies in either the up- or down-regulated sets over the total number found in both sets by each technology
and the percentage this represents is reported.

Table 6. GO biological process categories represented in the lists of down-regulated genes detected by each platform (top 200 ranked by F statistics)

Multiple comparison adjusted P-values List hits
GO Biological Process Amersham Agilent Affymetrix Amersham Agilent Affymetrix

Cell cycle <0.01 <0.01 <0.01 86 48 35
Nucleotide metabolism <0.01 <0.01 0.14 13 5 3
DNA metabolism 0.03 <0.01 0.02 47 34 21
Ribosome biogenesis 0.03 <0.01 1.00 6 5 2
RNA metabolism 0.19 <0.01 1.00 29 13 8
Transcription from Pol I promoter 0.28 0.02 1.00 7 6 3
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dependence between the datasets would confound any infer-
ences we could make about differences in correlations
Therefore, although we found slight variation in the linear
correlations between data, determination whether differences
in correlation were statistically signi®cant could not be made.

While the study was mainly focused on evaluating the
performance of individual microarray platforms, we unexpec-
tedly found from our exploratory analysis of the datasets that
substantial differences existed across platforms. After dichot-
omous classi®cation of the genes for presence or absence of
differential expression using a Bonferroni-corrected alpha, we
observed virtually no intersection of the target gene sets.
However, by using a less conservative alpha of 0.001, we were
able to observe a non-random association between the
classi®ed data in comparisons between the cDNA(Agilent)
and oligonucleotide technologies (Amersham and
Affymetrix). Nevertheless, despite the greater similarities in
the hardware and protocols utilized by the two oligonucleotide
platforms, there was no signi®cant agreement between
classi®cations produced by Affymetrix and Amersham.
Overall, using a variety of call criteria, our results show that
the best level of agreement between the target gene sets was
only 21% (between Amersham and Agilent, using a 2-fold and
P < 0.001 criteria), when calculated as the intersection of two
platforms as a percentage of total number of differentially
expressed genes detected by both platforms. Thus, although
the gene sets overlapped to some extent across platforms, the
majority of genes identi®ed as differentially expressed by each
technology were uniquely identi®ed by that technology. This
result confounds interpretation of a target gene list found by
any one of the microarray platforms. We feel that the low level
of overlap between the gene lists indicates that the prognosis
for the interchangeability of microarray platforms in this type
of experiment is currently poor. However, when looking at a
higher level of comparison such as biological themes on the
200 highest ranking down-regulated genes, it appeared that
there was better concordance between the Agilent and
Amersham platforms, suggesting that enough genes within
distinct GO categories were detected by each platform to
arrive at a common biological theme.

Previous cross-platform microarray studies also found
considerable discordance between gene expression measure-
ments (5,15). Kuo et al. observed little reproducibility of the
hierarchical clusters of the NCI60 cell lines using gene
expression measurements using oligonucleotide and cDNA
microarray measurements. In contrast to this analysis of the
NCI60 data, our current experimental design enabled us to
examine the comparability of repeated measurements of a
single RNA preparation where the only factor distinguishing
these measurements was the type of microarray assay
employed. With the experimental design presented here, we
feel that the source of the discordance observed in our results
may likely be attributable to differences inherent in each
technology. Additionally, because of the greater level of
experimental control within this study design, we expected a
higher level of comparibility of our results than that observed
in the previous analysis of the NCI60 data. Despite the
removal of potential sources of variability, we arrive at a
similar conclusion that the gene expression results depend to a
large degree upon the type of microarrays used in the
experiment.

Since there are alternative algorithms for normalization and
probe level analysis of Affymetrix GeneChips, we investi-
gated the possibility that use of these algorithms could
improve the level of agreement between Affymetrix and other
platforms. We reanalyzed the raw cel ®les from Affymetrix
using two algorithms, selected because of their wide accept-
ance among Affymetrix GeneChip users: dChip (DNA-Chip
Analyzer, PM-MM model) which uses model-based expres-
sion indexes (11) and RMA (robust multi-array analysis,
default parameters) (16). Using the same mixed-model nested
ANOVA method (P < 0.001), gene expression measurements
arising from both algorithms slightly improved the cross-
comparability of differential gene expression classi®cations
for the Affymetrix platform when compared against the
Amersham platform, but not against the Agilent platform (see
supplemental Tables 9 and 10). Furthermore, the maximum
agreement rate reached was not >11%. Interestingly, the
results across three different algorithms within the Affymetrix
platform showed a level of discordance similar to that
observed for cross-platform comparisons (supplemental
Table 11). Hence, the possible contribution of an algorithmic
component of the Affymetrix platform towards the discordant
gene expression measurements cannot be ruled out. However,
it appears that the single probe platforms (Agilent and
Amersham), despite having more straightforward analytical
methods, were not more concordant.

Overall, the results of this study suggest that cross-platform
differences arise from the intrinsic properties of the micro-
arrays themselves, and/or the processing and analytical steps
of these microarrays. Possible causes for platform-dependent
differential gene expression results may include: probe
sequence differences, variations in labeling and hybridization
conditions and ultimately factors that derive from an overall
lack of industrial standards across multiple technologies. In
addition, the notion that the lack of concordance might in part
be attributed to the detection of distinct types or sets of
alternately spliced transcript variants among the technologies
is one we are actively pursuing. Although we are continuing to
study the contribution of probe sequence differences to the
platform-dependent differential gene expression results, at
present we only have full access to the Affymetrix sequences,
and are negotiating full access to Codelink probe sequences. In
addition, there is limited sequence information (last 100 bp on
the 3¢-end) for the cDNA probes from the Agilent platform,
which would preclude us from making a more comprehensive
sequence comparison. We believe that continued re®nement
of these technologies is necessary before measurements from
various commercial technologies can be directly transformed
to a universal gene expression index. Our study underscores
the importance of follow-up veri®cation of results from
exploratory microarray experiments. Previous exploratory
studies have found agreement between genes screened with
microarray data and subsequent northern blot or real-time
PCR veri®cation of expression measurements of screened
genes (17±19). In a similar manner, we are planning to use
real-time PCR as an independent method for resolving the
con¯icting gene expression results.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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NOTE ADDED IN PROOF

While revising our manuscript, Barczak et al. (20) reported a
study of gene expression measurements of identical RNA
preparations using Affymetrix and long oligonucleotide arrays
that found a high level of correlation between relative
gene expression measurements made on each technology.
However, a direct comparison of these two studies may not be
appropriate since the results presented here do not include a
long oligo format. Preliminary analysis of the probe sequences
used in that study suggested a high degree of overlap, which
we have yet to test with the platforms in this study.
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